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FOREWOt%D

This final report presents the results of research conducted for _SA

Headquarters under Contract No. I_Sw-565 dated December i, 1962. This study

contract was awarded in response to the United Aircraft Corporate Systems

Center Proposal No. SCP 6211 dated May 4, 1962. The original proposed scope

was revised to cover the research topics outlined in Section I! of this report.
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In this study, the acceleration hodograph ",:asused to obtain transformed
equations of motion for a propell<d space vehicle subject to the f]ravitational
attraction of one major celestial body, in two-dimensional space. Basic de-
finitive relations were dete_i__eC_ which are convenient for th_st pro_ram
synthesi_ and trajectory am_lysis.

In is shownthat the acceleration hedo_raph of an orbit (i.e., a balli<tic
trajectory) is a form of the lir_9on. The acceleration lima_on and the hods-
graph equations of motic,n enaLle a direc_ graphical representation of the thrust
program, as well as space, w,_locity, and acceleration coordinates _£ the tra-
jecto_/. The hodograph equations describe the space vehicle motic_) wit}_ thrust,
by a continutun el' instantaneous orbital hodographs. Consequently, upon thr<_st
termination for any reason <{ndat any insto_nt of time_ the hodoNraphequations
provide the subsequent b_ilistic trajectory directly. Hach_ne solution of the
hodograph equations requires only one integration of first-order, n_nlinear
differential equations_ while the classical equntions require t,,x integration_'
of second-order; nonlinear d_fe en_ial equations.

The space trajectory obtainable with one class of thrust progrm_ has been
analyzed by use of the hodograph equations of motion and as:_ociated relations.
This thrust program, which is bein[_ stud k,d for potential lunar landil_g appli-
cations; resulted in acceleration hodograph equations of trigonometric form.
While the desired closed-form anai_tic solution was not obtained, the c_trre_t
study results indicate that such analytic solution 1_myyet be achieved. United
Aircraft machine so!utio_ of the hodograph equations provided _xcellent corre-
lation with the NASA_achine solution of the classical equations_ except in the
close neighborhood of the terminal point. The ter_inal point itself is sin_u!ar
in the hodograph transfor_mtion, since the ter_inal _el_city is zero. In
addition_ the current study results have revealed pre_iously unsuspected tra-
jectory characteristics useful for future study, thrust program application,
and system mechanization.

Future advanced study of the transfor_r_tion technique has been recommended
in the basic areas of extension of the application techniques, investigation
of the basic characteristics of the application equations, computation and
optimization techniques with hodograph equations_ and further analysis of the
specified lunar landing thrust program. In extension of the application tech-
niques, formulation of the three-dimen:_ional equation._, analytical treatment of
oblateness effects; and analytical treatment or drag or other resistive force
effects are pars_nount. Investigation of the basic characteristics of the appli-
cation equations should result in hodograph generation techniques, so that
analytic integration would be unnecessary. System mechanization techniques
such as situation displays and abort emergencycomnandand control may also
be greatly facilitated by the use of the hodograph equations of motion.
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I. STUDYBACKGROUND

The synthesis and analysis of trajectories for powered space vehicles is
a relatively new and only partially understood branch of space technology.
While the general equations of motion can be defined rigorously for subsequent
computation by high-speed and large-scale digital computers, such equations
and the associated computation processes are usually quite extensive_ complex,
and intractable for preliminary design study to determine system feasibility.
That is, the required time and cost of such generalized treatment of the space
trajectory problem area are usually prohibitive for effective system analysis
of new concepts pertaining to newmission requirements. Equally important_
such mechanical treatment provides little understanding of the underlying
criteria and performance characteristics as a function of the physical prin-
ciples. In view of the currently very incomplete analytic knowledge of space
trajectory classes of solution_ this deficiency maybecomeincreasingly serious
and restrictive in the development of advanced and more versatile space vehicle
subsystemsand detailed planning of space mission operations.

In recent years, analytic knowledge of the classes of ballistic trajectory
solutions (or the families of trajectories) has been effectively applied to
trajectory analysis by use of the variation-of-parameters method. With this
technique, a nominal trajectory (or trajectory class) is defined by suitable
orbital parameters. Then trajectories definable within this trajectory class
maybe studied by considering their variations from the nominal trajectory.
These variations maybe due to observational errors_ perturbation forees_ or
thrust forces. In classical celestial mechanics, the conic parameters_ which
define planar, unperturbed orbital figures, have oeen used most widely. How-
ever, the resultant equations for given space system applications are complex_
and singularities are encountered within regions of practical interest. Con-
sequently, transformations of variables (or parameters) have been proposed,
which "regularize" the equations and provide equation forms which are more
tractable for analysis of space trajectories_ e.g., Herrick's "universal"
parameters.

Heretofore, the variation-of-parameters analysis technique has been
effective principally for ballistic motion in the two-body problem formu-
lation, since the nature of these orbital classes has been completely analyzed
and understood. However, the variation-of-parameters method has not yet been
effectively extended to the N-body problems since little is known about the
properties of such trajectory classes.
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Upon application of an onboard thrust vector, variable in magnitude or
• O

direction, the analysis I and synthesls _ of vehicle motion (within the gravi-

tational field of one major celestial body) are most usually based upon ex-

tensions of the celestial mechanics techniques proven for ballistic trajectories.

Many such analyses and syntheses are based upon the variation-of-parameters

method. IIowever, most presently available techniques are usually deficient in

significant respects, and the results are often approximations at best. These

techniques are especially deficient in providing effective synthesis of a

thrust program to obtain a desired space trajectory. That is, which thrust

programs (or thrust controller functions) and parametric values thereof will

provide the desired trajectory? Horeover_ for a finite number of feasible but

different programs (and hence, different sets of parametric values), what

are the relative values of each progr_n_ and/or the significant tradeoffs

which characterize them? Also, _That controller function characteristics are

most significant or critical?

Such considerations led to the study of the velocity hodograph trans-

formation and subsequent development of its synthesis (Ref. 1-10). Initially,

the research phase consisted of investigation of the transformation properties,

resulting in complete analytic definition of basic equations and transformation

mapping relations. Subsequently, the development phase consisted of the

application of optimization conditions arm trajectory constraints to identify

the permissible trajectory classes. Unlike many other current space trajectory

study programs_ one of the more i_ortant aspects of the hodograph approach

is that machine computation is not a basic ele_lent of the investigation. Con-

sequently, analytic rigor can be effectively attained or explicitly @xamined.

The existence of the velocity hodograph transfo_tion and its utility in

synthesis of impulsive thrust progr_ns led to speculation (Ref. i, ii, 12)

on the existence of an acceleration hodo_raph transformation which might prov_

useful for the synthesis of continuous, as well as impulsive, thrust programs.

Such a transformation would enable _he consideration of acceleration sensor

subsystems for orbit determination and/or control. In addition, it would pro-

vide an analytic basis for comparison of impulsive vs continuous thrust programs

where these would otherwise meet all dy_amics constraints for space trajectorie3.

In general, only the basic definitive equations and synthesis process sufficient

to enable the application to study of one specified thrust program have been
developed.

i Analysis of the generated path, for a vehicle subject to specified constraints_

will provide definitive equations of motion and predict associated data not
observed directly.

2 Synthesis of the thrust program (i.e._ thrust vector as a function of time)_

for a vehicle subject to specified constraints, will provide a desired

generated path from the synthesized equations of motion.



II. SCOPE OF STUDY

The basic objectives of the research study un@er Contract NASw-565 were

the investigation and definition of the acceleration hodograph and its appli-

cation to the sj_thesis of space trajectories, with the latter objective

limited to the study of one thrust program class. The gravitational potential

field function was assumed to be due to a regular, spherical celestial body.

Consequently, in this initial study the research effort was limited to two-

dimensional (or planar) motion. However, if the study results for the two-

dimensional problem were to be found prom_sing_ extension to three-dimensional

space and/or potential f_elds with ha_._onic content could be considered in a

subsequent research effort.

A thrust pro_:ra_ specified by the Langley Research Center was to be ex-

pressed in tem_Ls of the auceleration hodograph pars_neters, to obtain an

analytic trajectory solution in closed form. I_L the given problem, the thrust

vector was always cow,strained to be directed opposite to the instantaneous

velocity roster, s_ au to generate a descent trajectory from lunar orbit to

.<ere velocity at a relatively low altitude above the lunar surface. This

thrust program app!icsticn is described in detail in Appendix A.

The thrust progra::L r_<y be specified as a function of time, or of one

or more state w_ri:J ]_:. For :,xlm]'],, a mavigat £o,u subsystem, which operates

explicitly to provide a_l upon-loop input to the control subsystem, will require

a thrust pro;gram defirked as :_function of time. i[owever_ a closed-loop navi-

g.ational mode of operatic,_L will use a th_ast program defined as a function of

a state variable such _,._;positional or velocity error along the F_th. A/though

the open-loop nod<, is th<. most prLmitiw: class of operation, the ..esearch study

has Leon restricted to eonsi,,leration of thm_st progrsuns explicitly dependent

upon time. Obviously, effective synthesis and analysis of such programs can

subsequently be recon,_idered for closed-loop operation, if the time-dependent
solutions are known.

The hodograph transformation has been found extremely effective in past

applications because the transfo_ned equations of motion are comprised of

simple functions of the spherical trigonometry. Consequently_ all state con-

straints can be defined without time in explicit form. Then, for example,

the constraints of position and velocity coordinates upon orbital transfer

can be presented graphically by planar geometric relations. However, the

formulation of state variables as a function of time, in the transfoz_nedL equa-

tions of motion_ has not yet been explored comprehensively. As a result, the

research study reported herein has been principally concerned with solutions

obtained upon integration of the acceleration hodograph equations_ rather than

the explicit generation of the a('celeration hodograph of the powered trajectory.

That is_ the integration of the acceleration hodo6raph equations would provide

the solution as a function of the :instantaneous velocity hodograph, which

defines the space and velocity coordinates completely.



It should be noted that use of the hodograph equations requires integration
of first order, nonlinear differential equations only, rather than of the
second order, nonlinear differential equations of classical celestial mechanics.
This fact, of course, appreciably reduces the complexity of the computer pro-
grammi_ and the required computation ti_. Explicit generation of the
acceleration hodograph would also defSne those coordinates completely, by
virtue of the instantaneous acceleration hodograph and its mapping relations.



T[Z. BACKGROUND S'JMVI&RY OF D#NAMrCS PRINCIPLES

Prior co derivation of the orbital equations of motion in terms of

convenient space and velocity coordinates (sec next Section), the follo_ing

slmLmary of the basic dynamics principles substantiates the analytic deriva-

tion of the orbital trajectory in the presence of applied forces_ rather

than for the simple ballistic ca_Te alone. This reference m_terial is attri-

buted to Reference i_. pp. 18-21.

A,

where

D'Alembert's Prine_Dle

O'Alembert's pr]n:;iple results in Lzgranze's equztions

d9 _--_i (::]qi-Qi

U : system kinetic energy of orbital point m_ss motion

Qi = generalized force component in the qi-coordinate.

(i)

B. La_range's Equations for a ronservat]ve oyst_m

av
When Qi:--- ,

C3qi

_is For rl c )iL.](_l'vtt__ r_.:/._,_S, t.J._<_<he forces _irc doriv:ible fro_l a scal_ir

potential f_J_,ci,io:i V, _]i,.:iL<_gr.._.:.gc'- equations become

_qi
(2)

where

L=U-V = the "La6rangian" of the system.

C. Lag_ange's Equations for a Velocity-/k_pendent Potential

The previou_ fara{iraph described the system motion when the potemtial is

a function of the position coordinate only. Waen the generalized forces

are obtainable from a fumction W(qi, qi)' then the same basic form of

equation ]s preserved, as expressed by

d---t _ chqi = Qi (3)
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where
L=U-W.

That is, W_V. The term W is also _escribed as a velocity depenlent potential.

D. Lagrange's E_uatio_ns___fo___ra Dissipation Function

It is interesting, although not directly pertinent in this research

study, to note that

i O--qi Qi (4)

where

L contain_ the conservative potential function_

and

Qi represents the nonpotential forces, such as frictional.

In this instance_ Qi is described as a dissipation function, where the

forces may be frictional in nature. This would be the c_se for atmospheric

drag_ for example, or passage through an interplanetary gas cloud°

In the present study, Lagrange's equations for a conservative system

will be obtained by use of the Lagrangian for the vehicle system. As an

alternative, the principle of linear momentum (Newton's Second Law of Motion)

m_y be used to obtain the orbital equations of motion; i.e.j the time rate

of change of the linear momentum of the vehicle rigid-body system is equal
to the vector sum of the external forces.

In the present problem_ the gravitational force of attraction due to the

external source is derivable from the scalar potential field function of the

celestial body. The thrust force is provided by the expansion of gases_

accompanied by a change in the vehicle system mass. S_nce the entire mass-

rate change of the vehicle system (as considered in this research study) is

entirely related to the rocket thrust force, the mass change indicated by

the Lagrangian or mo_ntumtreatments will not be present in the final equa-
tions of motion (Ref. 14).

8



IV. GENERAL EQUATIONS OF M3TION

ko Derivation with the Lagrangian

The Lagrangian of the complete space vehicle is

L=U-V=._- +(r_ + r_ (5)

where r, LT, and m comprise the set of generalized coordinates qi" The velocity

components are functions of the radius scalar and the direction angle_ as

shown in Figure i. Note that the Lagran_ian (per unit-mass)

/

REFERENCE LINE

FIXED IN INERZiAL SPACE

N

r _ =v n

_CE_STZAL BODY

/_ CENTER

Fig. 1 Vector Definition of the Vehicle State in Inertial Space

(6)

is indepenient of the mass change_ so that mass would no longer comprise a

generalized coordinate in this specific mass formulation.

9



f

For the r-coordinate: @L • _ u_m
_m: r_ - r,_'

(7)

(8)

\ _--)- m'_+rhi" (9)

or

For
l

•". rh_"+ m}"-mrP 2+ _: Or

+ "__ rp2 + : Or
m

the _-coordinate:

Ok= 0
c_,

(IOA )

(lOB)

(_i)

(z2)

cl/f.._.L'_ : rhr_t.- 2mr_/_+mr2P
dt \cqz,,/

(_3)

... rhr2P+2mr_,P+mr2P : O_

or

(--_)rp+2_P +rp: e-wmr

For the m-coordinate:

so that

I0

/[(_)_+(r_)_]+ r_:Q m

(Z4A)

(i4s)

(15)

(]_6)

(17)



Consequently, al<hough the vehicle system mass changes with tim<_._

no new information i_: provided. That is_ Equation 17 sho_s !hat Qm- L _
although the mass-rat< change i_- corn:trained to the mass-flow law

arbitrarily sclcctabl__:. For example_ in the lunar landing problem

application here_ the ma_..:-flow rate is constant. Then

m=k (_)

or

m t

J °m-o/
m o

m-m o = kt

k dt (19A)

(19B)

m = me+ kt, (19c)

where k is negat,[ve ir'_ :.:[_,:r_.

.,_.ccor_]irzgto ',he momcnt!un <'quation for rocket motfon (Ref." 15)_

so that_

and

But in general,

m_a=-r_vg =- T

f=rh;_ +m_

(20)

(2z)

(22/

(23)

so that
fr -=Qr =rhr- rnvgr

Qg

(24)

(25)

11



C on _e qu<,nt iy

=-- -_-

2_p+r_=- VgM- m

The rcsultam% vector <_quatiou of motion: i_ l-hc,n s_,en to _e

B. Derivation with the Momeutu_. Fz'incipl_

According to i_hc:,pr'_c][]< of _i_ear momen1:_m,

Also_ in vec<or fo_

o

-r= + (rP)T

(±_)

!4C

26

27

2!i_

mV=mr= (m})T+(mrP)] 2s,_)

m

f = (nh_T +m'rT + mh>D +

+ ( rh r_>] + m_+ mr_]- mrPZT)
(5oA)

T= (rh_+ m}'- m rz>2)T+ (rhrP +2 mi'P + m rl>)] (30B

T-[(_)} +'r-rL>lT + [(--'_) "' +r 4--_- rp+2rW ]" (3_-)

It is seen that Equation 30 is the vector form for EquatL0ns lOB and

14B. Consequently, the derivation results with the momentum principle

are identical with those from the Lagranglan.

12



V. VELOCITYHODOG[gd°HPARAmeTERSOFAN ORBIT

Although the velocity hodograph parameters of an orbit have been previously
derived and discussed at length (Ref. i, 4, 5), the basic formulation of these
hodographparameters will be recapitulated in standardized s}q_bologydeemed
more suitable for exteusRm to the acceleration hodograph.

Let us consider the total, energy equation for the vehicle rigid-body
system in orbit_ treated as a po£nt-mass:

E mv2
=-_- + VCr) (3_)

For the inverse-square potential field of gravitational attracti<_n,

V (r)=-_ -_- (33)
r

so that

E : mv2 /,.L,m
2 r (3LA)

is the instantaneous {mergy equation of the orbital system_ such that E; m;

}_ r may be functions of time, but_ is always constant. If the system is

consorvatLve (or in ballistic flig__t), then E and m are constant. As before_

let us resolve the velocity vector v (see Fig. I) into the orthogonal com-

ponents of a rotating polar coordinate system with origiu at the vehicle

center-of-mass; so that

or

E: -_-- (VrZ + Vn2) - ,_rm
(3_B)

(3_c)

Since_ in the conservative system_

= mrv n -- constant (35)

let

Then
r vn

2--_m= Vr2+ vn' - 2Cv n

(36)

(3_D)

or

: Mr 2"_ + C_' + (v n -C) _'
(S4_,)

13



This equation defines a circle whose center is located at the distance G along

the positive Vn-aXis , with radius

It is most convenient to refer the direction angle to the radius line

through perigee passage (i.e., closest approach to the celestial body).

Consequently, for an instantaneous orbit, and its hodograph,

Vr = [ = R sin _ (38A)

vn = r_ = C+R cos_ (3%)

and 1

v = (C 2 + R z + 2CR cosd_) 2
(,_o)

Note that v r and vn are defined in inertial space, although the true

anomaly _ (referred to the perigee passage for the instaneous orbit) is used

to describe their scalar magnitude (as shown by Equations 38A and 39A). Con-

scquently, the energy equation can be presented in terns of the instantaneous

parameters (C,R) and the t_te anon_ly _. If the system is con_.ervative so tha_

E and m are constant, then she angular momentum _ is constant, as noted pre-

viously. As a result_ the parameters C,R are also constant terms whic!_ can be

used to define the orbital velocity vector.

The locus of the velocity vector terminal point with the velocity vector

initial point fixed in space describes a curve defined as the velocity bode-

graph of the orbit. I In the middle of the 19th century, IIamilton and MSbius

showed that the velocity hodograph of the planar orbit is a circle in inertial

space (Ref. 16, 17). Also, the velocity hodograph may be presented in com-

plete three-dimensional vector notation (Ref. 18). Although the hodograph

parameters have here been defined by use of a rotating polar coordinate system

with its origin at the vehicle center-of-mass, the hodograph in inertial space

is shown to be defined by these s_e parameters, upon reference to Figure 2.

In a rectilinear coordinate system with origin located at the celestial body

center-of-mass_ and the apsidal line used as the direction angle reference,

Vx= Vnsin¢-v r COS(_i_= C sin(j_ (_l)

so that

v°co,¢+Vr,i°¢ ;. +cco, 

Vxz ..F(Vy- R)P"= C z

(42)

(_3)

i The unabridged definition (Webster's New International Dictionary, 2nd

Edition Unabridged, G. & C. Merriam, 1958) of the hodograph of a variable

vector is as follows: The locus of one end of a radius vector (the other

end being fixed) that represents in magnitude and direction the rate of
change of the variable vector.



Vn

Vr_ Y

X

Fig. 2 Velocity Vector Definition in Inertially-Fixed Rectilinear Coordinates

Conversely, note that

co  -R (BSB)

so that

Vn : vy cos_ + VxSin (_ : C+R cos _

Vr2 +(v n- C )2= R2

(39B)

(B4F)

In rotating polar coordinates_ the velocity hodograph of an elliptical

orbit appears as shown in Figure 3. In general, all conic sections of orbit

are defined by the hodograph equations without change, as shown in Figure 4.

This polar velocity hodograph has been useful for analysis of the orbital

transfer problem (Ref. 2, 3, 6, 7, 8, 9). Some basic mapping relations for

the hodograph transformation are presented in Table I.
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Fig. 3 Planar OrbiL and Its Hodograph
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TABLE I

VELOCITY HODOGRAPH TRANSFORMATIONS FOR AN ORBIT

vr = R sine

Vn= C+R cos ¢

R
e= E

(36

(37

(38)

(39)

(44)

a =

(C_R=)l
13= (48)

a (i-e z): (49)
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VI. HODOGRAPH EQUATIONS OF MOTION

The general equations of motion (Eq. IOC and 14C, or 26) are now to

be expressed as functions of C,R, _ (and the time-derivatives thereof)

rather than r,_; (and the time-derivatives thereof). From Equation 38A,

and from Equation 39A_

i,Z> + r i_ : C,+I_ cos(J)- R(j_ sin_. (51)

Them, from Equation lOC_

mar=-_-:(l_sin_ +R_cos(_))-(Cl_+Rl>cos(_)+Cl> (52-_)
m

and from Equation 14C,

_°n= m

Since

so that

_,= _ + _, (54)

#-R s o+-R<zco +

z_en= _= C+l_cos(_ +RXIZ'sin(_

respectively. In vector form_

[= mi=(l_ sin_-R_ r cos(f)-C I>)T+ ((_+IR cos(j{) +R_ si n(J)) T

or

=(Aar-C;>)T +(Aan)f

(%A)

(569)
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Lbte that the gravitational attraction provides the C_-term in the

I -direction.

In a rectilinear coordinate system,

(:Ix= en sin _-erCOS_ = (_sin 4 + R_7"+Cz_cos_ (57)

Oy :o n cos¢*orsin_ = I_ +(_ cos(_- CZ_ sin Cf) (58)

so that

Conversely, note that

o,: :

(59)

(60)

On = OyCOS(_+d x sin(_ =_-,+1_ cos(_ + RX_/'sin (_f) (61)

so that

.2

(Or+ CZ_) + (en-(_f:_R)%{R__"

A. Acceleration Hodosraph of an Orbit

(6_)

As shown in the previous chapter, the velocity hodograph of an orbit

is a circle. What can be said about the acceleration hodoEraph of an orbit?

For the ballistic trajectory, the acceleration due to thz_st is zero

(i.e._ /_0 r = m8 n = 0 ) so that Equation 56 reduces to

=(-C_')T_(-C_)T • (63)
I

In this case, the true anomaly rate_i_ identically the radius direction

angle rate_ , since the apsidal linqe_ (to which the true anomaly is

referenced) does not change in the b_llistic problem (neglecting oblateness

effects, of course). In terms of th_ acceleration polar scalar,

p=c@. (6_)
However, it can be shown by use ol _quation 36 that

_:eVn' = _ (C+R cos(j))'
(6_)

2O



so that

or

This equation is recognizable as a form of Pascal's lima_on (Ref. 195 20)

defined by

c +d cos _ (66)@

Yhe ]i_m_on is describe<I, and some properties of the acceleration hodograph

are derived from the basic form of the limagon, in Appendix B. Consequently_

the acceleration hodograph can also be used to represent all conic sections

of orbit s as shown in Figure 5. Some basic mapping relations for the

acceleration hodograph transformation are shown in Table II. However, the

simpler hodograph figure and mapping relations shown in Figure 6 are more

_menable to study and interpretation of the acceleration hodograph character-
istics.
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TABLE II

ACCELERATION HODOGRAPH TRANSFORMATIONS FOR AI_ ORBIT

p=C_

r:]-fi-_
Cvn=_

Cvr= _ tan(_'

Vr_ i-u tan_)

_n-2(u+tan'_)

F1-u,o.911
(_)= arc ,anLu+tanf}j

e= (2sin<_ cot(_'-cos(_)-'

,_2(2-co,(/:,,ar:(_')
a 4 csc' _ '-(tan{_'+2cot{_)' _

(64)

(65)

(67)

(68)

(69)

(70)

(%)

(72)

(73)

2

P:2-cot_ta.(£'v/-_p#

_:(_}_(_-co,t_,ooO')"

(74)

(75)

tan(_'csc_
[2(2-cot_tan(_')]{

(76)
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]_ Variation of the Direction Ar.gle Reference

Ii_ the basic definition of the hodograph and referring to Figure i, 'he

angle hero,Teen the radius vector line (defined by N ) and the reference line

fixed in inert Lal space is the direction angle _. The hodograph is only

defined for a f Lxed reference line. For orbits, the apsidal line directed

to perigee passage (defined by%_) _y be selected as the most convenient

reference line. In general, however, this apsidal line will change its

orientatiou in inertial space whenever thrust is applied. Consequently, the

hodograph pars_aeters are only defined, in the case of a continuous thrust

pr©{;ram, f_r a continu_rL (in time or space) of instantaneous orbital hodo-

graphs with the parameters C, R_ and_ Tf as functions of time. The apsidal line

orientation _ is seen to be a function of C an_ R upon consideration of the

dcfiniti-_e equation for the parameter C of an instantaneous hodograph:

c - (36)
rvrl

Then

r = _(C _' + CR cos (_)-' (_'9)

r: -_L(C2+ C R cos(_)2 (2 CC + (_R cos (_ + CR cos (_ -CR(_sin (_)(8oA)

or

-2

vr =-_(Cv n) (C(_ +Cvn+ CIRcos_-Cvr(_). (8oB)

so that

_±nce,_-'by Equation 3,6,

C_ -(Cvn)2

[c •/vn-C ;]then (Cvn) Vr =+(Cvn) Vr _ _ (_+ (_Vn+ C R ____} + Cvr-_V-j

(8_)

(83)

r o
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or

CRC + RCvn+ ClRvn-C 21_"1-CRvr_- 0 (8_)

Therefore

-_:__, vr / (8_A)

or

+ (co,oh)

C. Transformation of Parameters from the Time-Domain

The hodograph equations of motion were previously defined by constants,

and by parameters which are time-dependent. However, if these parameters are

constrained so that they are functions of space coordinates rather than time,

the parameters and the consequent equations of motions may be transformed

from the t_e domain of formulation. For example, assume that C and R are

functions of the instantaneous true anomaly _, by suitable constraint of

the thrust vector magnitude and direction. This condition could be provided

by an idealized closed-loop control in response to an inertial se_sor <ub-

system and guidance controller. Then

so that

and

so that
0

= R_C_ (88B)

Also

Utilizing these transformed parameter variables (C_, R_ ), the hodograph
equations of motion may be directly transformed.
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This change in the independent variable from time to a space-coordinate

suggests itself as a potential technique for synthesis and analysis of space

trajectories resulting from closed-loop guidance and control.

2_



VII. LUNA_R LANDING PROBLEM

The hodograph transformation will be applied to a thrust program class

of immediate interest to the Langley Research Center, for possible use in

the lunar descent and landing problem of the manned Apollo mission. In

particular, a closed-form (or analytic) solution was desired. Although such

solution has not been attained, the resulting equations should enable con-

siderable insight into and understanding of the characteristic performance

of this trajectory class.

In this problem s the magnitude of the thrust vector is always constant,

while the thrust vector is always directed opposite to the velocity vector.

The rocket fuel mass flow rate is constant, so that

m= m o + kt , (19C)

as shown previously.

As noted in Appendix A s the thrust program would be applied at the

perigee passage on an elliptical orbit about the moon s as shown in Figure 7.

A. Basic Hodograph E u_io__ns of Motion

The thrust and velocity vectors are related as shown in Figure 8.

Tr

Tn

V

LOCAL HORIZON

(in direction of flight)

LOCAL VERTICAL

28

Fig. 8 Vector Definition of the Lunar Landing Thrust Program
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Zr Ts,oe_ar = - _ = rn v
(90A)

T (Tlv°Aan" =--cos=- - --
m m m v

Cousequently, by use of Equations 52B and 53B,

(_)_r _cos_Aar=- _r=l_ sin (_ -

or

(__) Rsin(_ _l_sinCj__R_rcos (_V

and

/_0 n (T_m)_- = (_÷l_cos_ ÷ R%_rsin_

or

= (_÷l_cos (_ + R_rsin _.

There fore

T_ I_sin_R_trcos_
mv R sin _ "

and

T
mv C + R cos(_

(9_)

(9oB)

(9oc)

• (9n3)

(91c)

(92A)

(9_)
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so that, upon combining Equations 92A and 92B,

#c_ir_+_-C@¢o_/.-R_oo;+
(93A)

(_c-_R/,_._-RVCR+cco_l - O (93_)

Consequently_ substituting Equation 93C for _ in Equation 90C,

-(_)R._= __R +coo_l-_o_co_(_c- eR)_
R_-C cos_ '

(9_C)

.(9o_)

_(£)_=RI,+c_._.c,_+_i, oo_i
IR + c c_ (90E)

T I_+C COS_

-m"v = R +C cos_ (9oF)

The same result ( i.e., Eq. 9OF) would be obtaLned upon substttution of Equation

93C for_ In Equation 91C.

The general expression (Eq° 86B) for_ may be equ_tedwlth the special

expression (Eq. 93C) to obtain

co,_ - c_,,o_-_,,n_
(94A)
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Reduction of Equation 94A results in

C R +2C cos qb

The combined use of Equations 90F and 94B provides

(94B)

T _ C (95A)
my C

The use of Equation 94B with Equation 93C provides

Equations 93-95 comprise the basic hodograph equations of motion for

the lunar landing problem. These equations_ tozether with various poten-

tia!!y useful auxiliary equations which were obtained from them, are

summarized in Table III. In addition_ the following general equations of

the basic holograph theory are useful:

= -cc+Rcos@i' (i00)

2 R2v = +Ca+aRC cos _ (i01)

Equation 95A or 95B in Table III provides the following vector equation for

the lunar landing problem:

_o = - _C) (VrT+ vn]) (102)

The trigonometric character of the equations in Table I[I enables a

simple geometric construction which presents these hodogTaph equations of

motion, at any given instant of time. The definitive triangles are shown

in Figure 9, _th all equation terms suitably identified.

The hodograph equations of motion may be treated in two different ways,
to obtain trajectory solutions:
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_;-f_r,, ,,_: i j, L _ _,_' T i' _' ._,_-.... _ ':<

T f, ,R

my C R+2Ccos R÷CcosC_

( ;i 5A. :-':":; ;%"::;_')

Iz "sio6__l C.'_ ".3
.jj-- s

or

_': *"C '°"@
(93_')

R (96)

v=(_C-RR= 'C v
(9,r;95"TS)

or

RI_= _ {Cz-v')

(95C;98A)

(98B)

(99)
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Fig. 9 Geometric Representation of the LLP Hodograph Equations of Motion
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I_ Integration, to obtain the continuum of instantaneous

hodographs as a function of time.

2. Generation of the hodograph (or trajectory mapping)

in the "acceleration plane."

With integration, only one integration is required, since the instantaneous

hodograph completely defines both the velocity and space coordinates. While

analytic integration to obtain closed-form solution is highly desirable,

machine integration is currently most common in general synthesis work. In

this latter case, programming and machine solution are expedited with hodo-

graph equations, due to the need for only one integration rather than the two

integrations with the usual equations of motion°

If a general formulation of hoJograph generating theory (or differential

geometry) were available, the direct use of the hodograph equations womld be

obvious. However, in the absence of such general theory, the hodograph equa-

tions can only be studied, relative to possible generating techniques, by

the elimination of time as a variable. Consequently, the hodograph equations

_st be transformed from the time-domain to the "acceleration space plane."

B. Transformation of Equations from the: Time-Domain

Let us consider the hodograph equations in Table Ill. All equations

in which mass ( m ),d°es not appear can be expressed as differential equa-

tions in C, R, and(_(or _)_ as presented in Table IV.
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TABLE iV

TIME-FREE HODOGRAPfl EQUATIONS OF MOTION

FOR Y_IE LUNAR LANDI_NG PROBLEM

dR _IR+ d¢ (cosd))
d_.C.C=_C R +2Ccos_ =- R+C cos_'

(io3)

(i04A)

OF

Or

(i04B)

(iO_C)

(Io5)

(106)

(v__)\(_R)2+(_c)2+ 2(_R)(_c)cos@ (i07)
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2
_.. -_'_ :,_:._, _i _ '_<.3.._-_,/,_-_ ...... o ....-_.... (or _ )

1<
......... .. , .,j _. , __ _quations 55, i00 aud !01.v_&_la3].e; z'atn(;r _]." : '_. L, c-" _/ _._ u-' -,_' t'

use of _i?< _clu_._ i o-._s _, 'f_:¢o_-kc i_J, i, hc _-°_7n_,_..... ....,,__,,_-< p_ir of' equations, _q_ich

R '_._-i _ are obtained:cor_tai;:_orfLy :he d.if_'__ .... .t.i&!s f'oc C_ ,
i

2 ,I

R = -d_

as the_ independent

By

( lo_]

dR

f

,Z -,_- .... ., .... , iZ IC .
!CR(C-eRcos_! _"C_,+-q_-FlCR c_s_, s,n
........................ "_....................... :-, -* f_109 _

-i:'_ cbf%_ .r" '

F{ ', b, "1 _.'.., _. 0 _@_ ] '

As sao_,;r_ by .... -'..5.C_ .... ' .......... P ,-_'_ ouJbql)'._< [., ! ,'r!;?,SS = S _l;C>L[_.fi ___<)J_y t;, _.li.t_b.{ OI" [, ira@ _ ,_]

this Lu0.%r laz/:__qg f.,?c:;!<:tp; si, .':t -.ka J'_;s t,-_zr:'zttot] is so defired. Noweve::',

note the, t, this time 7",_]..'.:t_[(_i. %4,5ti[(i ,JO,% OZCUa_" 11' _,¢SS va:riat.io:_ wera _ef'ine('.;

or controi!e&_ as & !'];_::tL T:; _, of sp<t:e; veiocihy_ oz" ucce]_erat [ou (>Ooh_dirlL},G3,

As far as -s kuowz; :3b,:'.', .>:;_,i:.zcd]ek v#.r]_r¢-,.[o_ of m:¢ss has not bee:: stu61e4_.

_2" such mass couhrol _s % %:c.c;.io:J cf coor,_ina_es (re.ti_er thac_ tires) ened_Ies

,_'].osel-f,orm :_oiut[ o_:_ to be obh,._; nt'<] -4!:er'<-]>}/_ cotis_quet-rh, t.hrusC proki_:'_ (or

control -/a_rs) might p_<'o.'e m,u:_t __esfct:k:_-_e us a, result of a high order of

pred[ct ton a,i'i_ :'epeat[Jb _ ]. l <y.

C o Orbits,]. Enert%r Re]__tt.i ons

Tn the ].uo&_i" 1;,hkd_i_tD prob].er_.: ' _'_-_ orbital energy equ-%tJon a_d -''_-i..... @ O_lta] b O._lS

r,%%yprovide _dditi oc,.:¢1 _n_;:,-Lj-t __: m_]..'_t:LOnS; O? phusical uiiderst_n,_in S of t[:e

trajectory synthesis° rn Re±'erer_c_: %, at: ot%:,-tal energy diagram <,_as deve]r)ped

in ter,us of %he hodograph para.ne.'..ecs. Tt was sho_rn thaTt orbJ ts .o_'s!oecif#eC

specific ener.._, (E) and of spec;fJed eccentric::ity were u_:iquei,v define& by

straight lines on th/s energy d[a/ri_eL'.',.

With t_xrust a,pp!ice.tio,_ tb_, orbitsi eaer8%r is obviously changed. In

baLListic f] ig}lt,, ill,' vi,_; viva i:" !,:(.:,_l p:',)vick's

(ii0)

so that

V_b=- r_ (ill)
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However, the specific energy equation is

(i_)

so that

But

E :v_) (il_)

v0 : V(VbH- _ )P

so thatj by use of Equ-_tions

Since

Iii and i14_

• - V0p: v_-vv b-

(ii4)

(iiBB)

(zi5)

then

(1130)

or

2
v

(ii3D_ii3E)

Also, the total acceleration may be expressed, as follows:

_ = - IT + _ (_-)] = - IT + CZ)s,n_
(il6A;ii6B)
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At this point; at. :iriteresting energy relation is noted; which eliminates

time in explicit form from the energy variatiou equation. By definition;

[ E__ (117)
m

so that

m _ Em (R3F)
E= m m2

Consequently;

(T)E Em _ _ (1!38)
m m 2

so that

T
l'u_ct ion of path len-sth (S )

If the term ( _" ) were co_s-t_nt of ,%
only 3

.... _ ,_- _- _ wc_t_Idbe avai!abl_. At thisthan an ±n_egra.l re±_tlo._ b,._,w,-_,=.,iE _ m., a_,J.S .... .

time; no knowledo-e of such properties o:f ( _ ) ,_s,'eknown. Also; accord_ ng
4-_ _ ...... _,.-_ 17"_r, .... _'-,_-"r'_] ;_=,Ioi : .... "b=+We _ E a"dS would be avail_ole if

% , . • -, _ 1

the term (_) were eonsta,m; or a fu,icts_on ol p,_,tn leugth only. This con-
m .... +. __ ...... _ -°_1arid 22.

ditiou and res_lltlng lricefrf_l veLa._]on w_e t.._ect in Referen_es

D. Machine Solution

i,;%en it became &i?p_'ent that aueo_%%ic soiutiou would not be attained; at

least uot _1% this time., ma.chine solution was obtsJned by use of an IBM 7090

and a Philco 2000 (Tr_.nsac) computer, A!thouzh such machine computation was

no +, specified _n %h<_ rese_,,_'ch contru'.t, mlchin_ solution appeared most

desirable _rior to comp]_e-[,ion of tLis i_,itiai stu:_@ effort. _<_iie the machii_e

._:o!t!:t.iosscs.n (,t%cu p:rov:_de sig_:,ificant clues to anm_l}rtica! techniques of

so!uDion, the 7:rov_'smm'm_-ugcharacteristic-_ of the bodosraph equations cou].d

also be eva].uate.2 c_m'so.?f)y. &s n:"d.ed previously, _chine programming of

tY,<_hodograp_:i equ<tJ_oee re..'s;i}<'tion _'eqt_ires on]?' one integration, while

%_he _u'N, _Nu_d;ic.;.'s of moi.i,,_ (7!i<.d:. _pc.c,? coordinsmes r,s variables) require

two i_rhegr_io).=s o Cons.squa£,tly, tha p;-o_r_.m_itk% was found to be simpler and

<.:_ ('_ _[[,.,_;_r_ :!e.<s i_u;_.,Y_io,:t ,x%)mclty (or logic)
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_',4_¢_.__ri_ J,:-JZ:O/t:̧ 0.;:: _' ' ' " "

not dOtainc& _4[ Un;",::<t .... ,_',. "_'%. C<<":'_.&,:_.:,_ .2.,,.,5 ....... of &ata iT,otnts for

sueZ: so!ui;-_<_ ,. wc_rc <:T,i;'_i::_<. ' .......,. ',r,,::. )-'<r_gluy _h:,search Cent..er for r._lative

" ' ' " ..... . ..'t -<h_ s l:oi_t, a i,_._sic difference betweene::Q.ltta_ji,on _%p.<.ub:[::C:(,l _, ._ ,-. . .

t,_&t_ two T_:<,h -_Go / ":.'_ u,q ir ;:.;.e< . _L,: bbe 1,:_o-_ IJro_fz'a._ L a v&rJ s.ble title

4-. f........ _ :?or ,;-'<,-_,_ .... ; iu Eh,-" _:" ].o:_oS:czzph progj..am, a fi:ted_il _.fTv :__. c o.r.l,_c)dt;-_L] <..-J _,,

_4=,:{:_ GnA:e/'.,,-u.?. :?oz' c <x,:i",_,.e,:, :,),, wz,.::'_u_s<:< . O'h,_u.se o-f a fixed tilna interval
.... " r,:' _ _ _:, (,__ va:cla_',.ior) oi-" s]]c:h, time in!;erva'.ts

Gpon the so]ut-i on G, ,:c,.ca,.:v, :[,',.<' cz:: .r :" i;]:,= (..t:Lange in relativ.; app_m_ent

d.i:ft?e:r'cnae bebw,.:_::n hc:_o._;r,..,_<: ,_r:,-t--:,:. : f,,-.)Xlu[:i,.: u _.n'_ c:i.s, ssical ec_ca, tion solution
:,ib: cb{.,.nGc }:, 4_,, L:'..,: -:,,f, r;,&<< _" __-"_ +:'"_ " ob,-,q! in i?iEtigfeS lO tl.Yld

li fi",:'.' z":_<:.f__, ( r ) :=::'.:: _,,:!":::J,,, ( v :,. T::_- z'c-i.ut_!Te ap_r.rent Ci.Cfe-t'ence
:: _ _ ' ,_.-: -:<,; " -._. ,.-'!:-:.,?. rio _ ':- 7:.d.t.io oi' t).te _,Lf':',:_eLePo.oe i_

t_l% "3 i 'l"_ r.... i_.: _J _' i, [ L[,:[ ' _ {[, '_-) ,.iJ', , u, i" ill' ')- [ I( ', ,P! ) , : r £'V[:'( "','," %i :tL' :J t_t ,'L _D i_/'{ _"11%1_:], d c' c P_o r_ r

L. s:'_,__o bv ).<_\;<_m:._i[(i.:.:,_i_i, i:.':_._.-:-;:._L<.n(y:?the i.%eg.vaZic)n interva, T_

_[ql_':,,FG_s _,.:E ,'::,:rrp'L[_,:.:1,.10", _o,:':_:':," '," _ "."," Lm F_,=:..-u_:.:__::r_,±°_ _ pb.&se of the tra,-

j_<t%b:,_'. _,,..<:,.,_<:, i-;,c {,,,/,;:! _ _.)',"_ -_,-, _:,,:: :2o1' t,_',._ t!.&jpc-,!;o:<_r 3cctn _;as a_oo,lt

._at_"_,_.tcs i r i,.::] ;:; ',:'_:..,:i'..!._![.e.: .,/,fo , Lz,_::..'ve,.:i: ,-'.nd _.;out 3_-40 minutes
r ,- ,?]:_ .............. __:'Or G.,)O<....... - .... .uJ!.s ir_ :<;.,)L.:;,;,'_ , ,:;£_-t<", s<,,7+1o-,-, oime tvOO--L,*"_"be a crit-

J_C_/ <.'.O_!SICc2, _ -0_! ., ;: "':,: "i-i ',:: .... 30} C I ,_).:L J:,:)l: .... 4-_4 -._-'-• .. ___l.L__=,__'_,.,operations were
de_;:L_,.'e£. ,i ....... " " "..... _.S_ .L: [,i. : t_r.] o;;i(,u t:i_J!: ' VS .... "_ toeqc.:..,, of sho:cber than the

,,.c_u_cZDz"v -,k,L:; .... , [.: (. : _"<0."' ..... '" ..... '" "
......... ,' " ..... ,j I_: [: _ X3_" [,: c<.u.LCi, be _]ozti%ored. by an

,.%S_CP.;_,U_ O_J3:<'COOZ ,:,:" ]::,/ :, <"!O'_'< '-'iO,_) S,;StCm Of.' th.:C_:l.st 'gOl?Z'eoi;ion-co£ztl:O:L,

to "f?_. the tr._jet--t<,:';,, ,,..'-._r,: " C:.:,._._ ......... -'- . ,: ,-::,_.z6'_ if i:lnc fixed integration

interval cf 0.01 sec<:,_,,i_: d:'.,i not :p:,:c,_ :.<g ::equired .r.-_ • _ ._,.ajector_ solution
accu_'acy_ _;he va:c-.ab.,c 1.<,",.-: ....:_;_ ....{,u <L_,- i_]te:._va.i. (as used in the NASA pro-
gl_;i) or zn anal_,ic sokui, fo:n ..... ..'_:u:!.,i. b _oc_ _'._e .. :ccquired. for such tea.."-t zm,_"
appl icat ions.

Prior to machi_e computati,.)r-, ib ;.__¢s _iop_zsent, tu,00n reference to the

general hodograph equ_.tions foz c,_::_orbit (T_o].e T) or the lunar landing

problem equa._ions (Tab?e I iT], %ha% the ter_inal point of the specified

lunar landing problem defines aJ:io±'bit which is indeterminate in the hodo-

graph transformatzon. :-t the te_,mzinu.i point of the trajectory, the velocity
is zero and the thrust is discontinued. Then the terminal orbit is a

straight line f',om the terminal point (or "apogee") to the gravitational

center (or "perigee")and such a path lies on a radius from the gravitational

center, with zero aQ/ular momer_t,_r_. Then C--_OO (Eq. 36 or 95A) and
_-_oo (Eq. 3Y or %c).

Remembering that the hodograph transformation regularizes all points

in the region of solution for real orbits (i.e., nonzero velocity and

angular momenttun), it is clear that the transformation has a singular point

of solution for this class of "orbit." which passes tl_ro_gh the attracting

center. Nevertheless, the machine solution from the hodograph equation

program shows excellent correlation with the solution from the classical

equation program, until about 2_0 seconds (e.g., see Fig. I0). Note that

the computing errors i_nlicit in the machine programming and solution of
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the classical equations of motion have not been considered, since they

are not known by the research staff. However_ the terminal point of

that solution could be at a trajectory time from 282 to 283 seconds, the

apparent termination point of the trajectory.

Two sets of solution data have been reduced to graphical form. The

first set consists of those trajectory variables which are provided by

either the classical or hodogr_ph equation problem _tatement, as follows:

i. _, r vs t (Figure 12)

vs t (Fio_'e13)2. n,6) vs v (Figure3.
4. __ vs _ (Figure 15)

5° _ vs _ (Fi_ure16).

For general inforraation; these characteristics are presented here

without comment. In Figure 13, note that the ordinate scale for the

radial velocity (Vr) _s five perce_t (1/20) of the normal an_ total

velocity scale. The second set of solution data consists of the trajsctory

hodograph variables which are provided uniqusly by the hodograph equation

problem statement_ as follo_s:

4. C vs R for 0-14 :;,,,c (Figure 20)

7. R w C (F±_u_o2_)

These characteristics are only a few of those possible for study. Neverthe-

less_ some very interesting and new statements about the trajectory prop-

erties can be made_ based upon these characteristics. In general, note that

the hodograph solution provides direct definition of the instantaneous orbit

at each point of the space trajectory. Consequently, upon any contemplated

or inadvertent shutdown of the propulsion system en_oute_ the resulting

orbital trajectory of the space vehicle would be directly available for

emergency decision or alternative thrust programming.

The characteristics of C vs C and_ vs R (Fig. 17 and 18) were provided

for possible study of the energy state changes, comparable to use of the

p_ase p_ane in the analysis of nonlinear oscillations (Ref. 23)o For example,
and _ are specific accelerations rather than potential energy terms, while

C and R are specific velocities which are indeed kinetic energy terms.

Consequently, the energy state changes m_y possibly be fruitfully studied

in analytic form by use of these characteristics° _t

T
-Note that the hodograph transformation _s intimately related to the

Hamiltonian function and its coordinates.
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J
At this point, consider the variation of the true anomaly rate (O )

and the apsidal line rate (_) with _, as show-n in the polar diagramlof

i

Figure 19. As seen upon reference to the tab.ular excerpt of values on

Fig_e 19 for i1.9-12.25 seconds, both j_and_F(of opposite signs) pass
through very large values (e.g., 13.93 radians/second at 12.07 seco_ds).

In essence, the instantaneous hodog_phs appear to be "rotating" (oF flipping

oTer) about 180 degrees. That is, within a very small time interval at about

11-13 secondsj the space vehicle has changed phase position in its instan-

taneous orbit from the proximity of perigee to the close proximity of aI ogee.

As will become apparent later, the resulting change in vector geometry has

a profound effect upon the mathematical description of the trajectory dynamics.

The characteristic of C vs R is the most immediately interesting of the

new data provided by the hodozraph equations. Examination of Figures 20-22

shows that two time regimes provide apparently different charact_.ristic

b_havior: th_ initial traj_<_tory pes_oc_ i'rom 0 to 14 seconds (Fig. 19),

and the "midcourse/terminal" perioff from 14 seconds on (Fig. 21 and 22).

In the initial perioff, _ changes from negative to positive value in a very

small time interval. The characteristic c_z_ve bears a striking resemblance

to a switching function, such as encounterea in electronic systems and

components. Note that the characteristic curve from 0 to ii seconds pro-

vides a mirror reflection (about the C -axis of symmetr%) which comprises an

extension of the linear characteristic from 13 seconds on. Note also that

this characteristic for the "midcourse/terminal" phase is remarkably linear,

with the slope of the characteristic equal to unity° This initial charac-

teristic leads obviously to speculation on its nature.

It appears that, as the space vehicle deparCs from perigee of the

initial orbit, the positive r_dial velocity must be overcome, by the negative

radial acceleration due to thrust (as indicated by negative _ principally).

Howe cer,. it is not readily apparent precisely why the abrupt transition in

sign of _ occurs, although it is undoubtedly directly related to the basic

vector direction change (relative to the local horizon) of the velocity (and

consequently the t_rust vector). Thus it is seen that this "switching" in-

terval is just that time interval for change in the true anomaly of the

instantaneous hodograph, described previously in the discussion on Figure 19.

On the basis of these observations, the following postulate is suggested:

If thrust inception occurred at apogee rather than perigee, the "switching"

phenomena would not be observed. If this postulate were confirmed (e.g., by
machine solution), then the following further observations would become even

more significant to analysis and use of the specified thrust program.

At this point, attention is called to the variation of the flight path

angle (_) with time (Fdg. 13) and with the space angle (Fig. 16). In the

selection of the T andS]values (see Appendix A), suitable terminal conditions

for the final landing on the lunar surface were undoubtedly desired. If

final landing were essentially along a lunar vertical, then achievement of

a flight path angle ( _ )_9T72 is desired as soon as feasible, to enable

proper vehicle attitutde orientation. It is suggested that an earlier
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attainment of this flight path angle might be provided by inception of this

thrust program at other than the perigee passage point. In the present

parameter selection, the path angle changes from about 45 degrees at 280

seconds, to 90 degrees at about 283 seconds.

The C vs R characteristic for the "midcourse/terminal" phase is remarkably

linear to the limit of machine solution accuracy, as noted above. Consequently,

this characteristic may be formulated very accurately, in this trajectory

phase, by the followdng equation:

£ = + K (i 9)

where K_- 25 fps 2. From this, we obtain

C=R +K(t-t i) 4- (C i-R i)
(12o)

where Ci and R i are correspondi_z given values at the initial time reference

t i (e.g., t i may be selected as 14 seconds on the trajectory program). These

additional relations may enable further insight into analytic solution of

the original, complete lunar landing hodograph equations (see Table I[!), or

be used directly for analytic solution form valid for most of the trajectory.

Due to the lack or further study time, such investigation has not been

attempted.

Finally, the characteristic of Rvs C is presented in Figure 23. The

significance of this characteristic stem_ from the orbital energy diagram

(Ref. 4) represented byR_vsC _, as shown in Figure 24. TheR vsC charac-

teristic is presented, rather than _2vsC 2, for concise presentation with a

reduced scale range. It is seen that in the initial trajectory phase (up to

_12 seconds), the instantaneous orbital energy decreases; in the "midcourse/

terminal" phase (_ >12 seconds), the instantaneous orbital energy increases,

approaching zero energy represented by the zero eccentricity line (shown

dotted in Fig. 23) for the terminal point. In order to be consistent with

the previously suggested postulat_, this characteristic would not show

decreasing energy for thrust inception from apogee. Note that this charac-

teristic provides direct qualitative evaluation of the instantaneous orbital

energy along the trajectory, with only a scale change required for direct

quant it afire evaluat ion.

The computer program for the hodograph equations of motion, together

with trajectory run data, is available at Corporate Systems Center for

f_ture reference and use as desired.
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VIII. TRA2{SFOH_TIOI_ T}_3ORY AL_ CITJSRACTERISTICS

The basic equations of the accemeration hodograph transformation have

been determinedj and one problem app_gication has been studied. However, the

scope of the transfor_p_tion theor_y required for complete application and use

is far greater than covered by this initial study effort.

First, let us consider the g_eneral statements possible about the trans-

fom_ation theory established as of this time. The equations of motion, when

transformed by use of the hodo[_raph variables, are orinci_aliy comorised of

trigonometr[<_ (i.e., tr_nscend_ntal) I'unctions (see I_q. 52P-, 53B, 56A). However,

the functional forms of the equations are qu±_e simple in structure, and of

lo_i differenti'_l order _-nd of firzt dcgr<¢. Consequently, both analytic treat-

ment or r_mnipulation and machine computation are significantly facilitated.

For example, it _as found that the computer programmers found the trans-

for_ed (i.e., hodograph) equation,s much si_mpler to program and check out,

largely due to the need for only one integration compared with two integrations

required for the original (i.e., I_ontransformed) equations, kne ease of

applying_ diagnostic procedures to test the program can become extremely

imi_ort_nt in l_,rg_ _:_,._L£i_,",3gr_m fo_' u:_ in i<_rg< ._[<_ce :;jst,<,mmission

and trajeetol_y computation and simulation.

Second, the transfor_led equations of motion are regularized with respect

to all classes of real orbit, l_at is_ no sincularities are encountered

within the real regions of so!utton_ such as are en< 0untered with a conic

parameter fom aulatio_ of the orbital trajecto_y or perturbation therefrom.

Consequently, the variation-of-parsm_eters method of describing the trajectory

class and its perturbation equations can be effectively used without re-

striction or special conditions required. _hile this statement is also appli-

cable to Herrick's "universal variables" and resultant equations_ this hodo-

graph transfor_mtion results most directly and naturally from the original

equations, without _mthe_mtical manipulation to obtain mapping functions.

That is, the hodograph parameters have direct physical significance, enabling

the direct mappimo of all trajectory characteristics over into the space or

velocity planes.

Third, the hodograph variables and the transformed equations of motion

can be directly presented graphically, due to their geometric properties.

This characteristic property has been effectively demonstrated by the geometric

presentation of the instantaneous velocity and acceleration hodograph terms

of the lunar landis] problem (see Fig. 9)- _his geometric presentation should

be generally possible, since it is also true for the impulsive thrust analysis

(Ref. 2). This graphical interpretation appears of outstanding importance;

second only to the possible ease of analytic treatment of powered trajectories.

The need for readout and display of the significant characteristics o_" a tra-

jectory has become most critical, in this era of extremely complex systems

and attendant computation requirements. For a completely automatic system,
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an appropriate display is esse_tial for mo_itorihg and diagnostic test

procedures for large-scale or high-speed machine computation.

For an integrated ma_-m_chi_!e system_ at! effective display of tr%-

jectory characteristics appropriate for the optim_a use of the human

operator's dec_sio_ capability is mandatory. The hodograph transfor-

mat io_ provides problem statement_ _;reatment_ and solution with analy-

tic r_gor 3 while simultaneo_s!y exab!i_g the real-time display of all

esse_tial performa_ce characteristics provided _n the most effective

relationshipsj as required.

Fourth_ it is apparent that the specified _ss variation function

(or "law") has a profound effect upon the possible analytic procedures and

application utility. The problem application considered in this initial study

program specified that the vehicle _ss be a function of time. Consequently_

analysis of the hodograph equations of motion required the integration pro-

cedure for complete solution_ rather than the differential geometry approach.

As mentioned previously_ the differential geometry analysis requires the

elimination of time e_plicitly as the independent variable. Since this con-

dition could not be met with the stated lunar landing pro%fern, only analytic

integration was atteKpted. For this reason, the differential geometry

techniques were not studied in [_reater detail. If the mass variation were a

function of space; velocity, or accelerat;[en coordinates_ then the use of the

differential geometry approach would be available.

This one point_ i.e., elimination of time from the hodograph equations,

is so basic to the potential use of the hodograph transformation, that its

feasibility is discussed in greater detail here. The velocity hodograph

transformation has been quite powerf<_l in provid Tug new solutions for the

ir_pu!sive thrust program_ %ecause time is not present in the problem

equations. (However, it should be noted that time relations can be provided

as auxiliary equations, as desired.) As sho}s_ in previous sections on the

basic derivation of the hodo(_raph equations_ time in explicit form is absent

from the basic equations of motion in every tem_ except the mass variation.

At this poinT; it is reasonable to ask whether the _ss variation_ as provided

in the equations of motion, can ever be other than dependent upon time

explicitly.

Considering the propulsion control only, i.e._ as an open-loop or reg-

u!ator function solely_ the r_ss-variation is obviously a time-dependent

function. However, if this fuel flow control or basic serve element is used

in a closed-loop mode of operation, the _mss-variation will become a function

of the error-sensed variable_ since the time-dependency is then only due to

servomechanism lags. If the closed-loop operation is satisfacto_j_ such

lags will be negligible in effect. It should be clear that the fuel flow

control will always be used as a serve clement in closed-loop operation. Con-

sequently; the following general statement on space system synthesis and de-

sign is proposed: The inner closed-loop (or loops) of which the fuel flow

control is a serve element may be designed so that mass-variation is a func-

tion of space; velocity; or acceleration coordinates rather than time. Then

the hodograph equations of motion for the space vehicle would be independent

of time as an explicit varia%le_ enabling the use of differential geometry
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solution for trajectory classes rather than analytic integration for solution.

This suggested trajectory s3_thesis and analysis procedure is a sharp
break with traditional trajectory study practice currently in commonuse.
Although closed-loop system theory has becomea dominant factor in space
system technology for hardware design, its influence upon mission analysis
and trajectory design has been quite l_aited and only recently recognized.
The principal influence has been the application of filter theory (e.g.,
Ref. 24) and dynamic progra_ing (e.g., Ref. 2!5) '.o these proble_ms. Much
of this work has been carried out by _nes Research Centez (NASA)and the
RandCorporation. The proposed change in the treatment of the vehicle mass-
variation is deterministic, enabking the use of all prior trajectory synthesis
and analysis techniques but with widely extended possibilities for analytic
solution. The research staff on the present study considers this proposal
as feasible and realizable from the viewpoint of mechanization technology,
as well as desirable a_ promising from the viewpoint of extension and com-
pletion of trajectory s©lutions, and understanding of the properties of classes
of powered trajectories.

Aside from the aforementioned application of filter theory and dynamic
progran_ming,the direct use of optimization programs (e.g., by use of the
variational calculus) to study trajector%_ classes, co_0rises a break with
traditional trajectory sy_ithesis and analysis practice. Such trajectory study
is at least as restrictive or limiting on design practice as the proDosed
treatment of the rr_ss-variation.

Before proeee_Jnc to the final section of this research study report,
somebrief coi_ents upon the lunar landing problem are timely. The desired
analytic (or closed-foI_u) solution was not obtained by the research staff.
However, the transfo_rLed equations of motion are so relatively simple in form
that future solutior_ mi(_ht be attained by their use, upon subsequent study
by moreskillful mather:_'_ticiausor analysts.

It should be note(_ that thc specified terminal condition for zero
velocity at a finite distance from the attracting center of the celestial
body defines a singular point in the field of solution for the hodograph
transformation. That is, this condition defines a point on an orbit which
passes, in the theoretical sense, through the attracting center of the
celestial body. Such orbits comprise singular solutions in the hodograph
transformation and equations. Consequently, machine computation accuracy
degenerates within the neighborhood of this terminal point; i.e., the
endpoint hodograph solution is indeterminate. The hodograph transformation
regularizes all orbits with singular points at infinite distances from the
attracting center. However, it is interesting to note that the _lid region
of _mchine solution for the hodograph equations extends quite close to the
singular endpoint (see Section VII-D). This computational validity is
especially interesting for possible re-entry studies by use of hodograph
equations, as proposed in Section IX. Since computational accuracy can be
attained with the hodograph equations for relatively small magnitudes of
velocity vector, such re-entry study is feasible.
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IX. RECOI_,_JTDEDAREASOFFUTURERESEARCHSTUDY

It has been noted that this research study comprises an initial investi-
gation of the acceleration hodograph transformation. The basic general
equations have been defined; the orbital (i.e., ballistic) acceleration
hodograph studied, and one problem application for an arbitrarily specified
thrust function has provided hodograph equations of motion for a vehicle
subject to that thrust function.

The transformation theory is clearly far r_mreextensive than studied to
date, while application techniques have not been treated comprehensively due
to broad scope. Also, in the course of study, manypromising areas for future
study have becomeapparent, and are presented here for consideration. Assuming
that the initial study results and the proposed study areas appear promising
for potential advancementof two-body space trajectory synthesis and analysis
techniques, the fo_ulatiom of subsequent study objectives maybe aided by
these study suggestions.

Future study maybe suitably classified as an extension of the application
scope_ investigation of basic characteristics of the application equations;
program mechanization techniques, and the lunar landing problem. The _jor
topics extending the application scope are

i. Formulation of the three-dimensional equations
2. Analytical treatment of oblateness effects
3. Development of the hodograph equations for motion in

molecular or sub-molecular media

The major topics for investigation of basic characteristics of the application
equations are

i. Developmentof realizable and useful mass-variation functions
2. Development of hodograph generation techniques by use

of the differential geometry
3- Energy relations
4. Time relations
5. Evaluation techniques for impulsive vs continuous thrust

functions

Program mechanization includes

i. Computation
2. Optimization
3. Situation displays
4. Abort emergencycommandand control
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A. Extension of the Application Scope

This initial study has formulated the hodograph equations of motion in

two-dLmensional space. Obviously, its extension to motion in three-dimensional

space will enable treatment of complete space trajectory problems. Just as

the two-dimensional fo_uulation of the velocity transformation equations

(Ref. 2, 8) has been effectively and simply extended to three-dimensional

space (Ref. 9), the three-dimensional formulation of the acceleration trans-

formation equations is seen as a clear and direct analytical procedure. As

noted in Section V, the three-di_nsional vector notation (Ref. 18) is a

most effective fo_nulation method. For example_ it can be sho_ that

_=_ x +

where _ and _ are hodograph vectors directed as defined in the Nomenclature.

As part of this study extension_ it is suggested that the contents of

Reference _ might be reviewed and correlated with the formulation results.

The hodograph equations are valid for the potential 1'ield of a regular_

spherical celestial body. That is, the higher order terms of a spherical

harmonic expansion for the gravitational potential field have been neglected.

The triaxiality te_:s which more accurately describe the real physical prob-

lem will affect the solutions, especially for the synthesis and analysis of

long-term trajectories (e.g., of time duration greater than one nominal

orbital period). For most trajectory problems other than the long-term orbit

maintenance required for communication satellites_ the oblateness effects

are generally sufficient for synthesis and analysis consideration. That is,

consideration of the spherical harmonics due to the first order difference

from the regular sphere (or oblate spheroid) are generally adequate for the

additional accuracy which may be required for long-term trajectories. _len

the J-term of the harmonic expansion

I OrI(' ) ]-;-
accounts for the oblateness effects upon the line of apsides (_) and the line

of nodes (_). As sho_m by Blitzer, Weisfeld, and Wheelon (Ref. 27-29), the

apsidal and nodal lin_ formations due to oblateness, in each orbital period

(or revolution) are closely appro×imated by

re ]' i) (123)

re ]2=z J o'(l-e )J cos i
(124)
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By use of Equations 123 and 12_, and using a time average for the apsidal and

nodal line rotatioms

However,

and

so that

3

(c).. J=J /.L cos i.
(126B)

Consequently; eithel the hodograph transformation or the equations of motion

themselves may be modified to account for the oblateness effects, if required.

First; in the original formulation of the hodograph parameters (see Section

V), the J-term of the potential function may be included in the ener6y

equation. Hence; modified hodograph parameters may be developed. As an

alternative; the major apparent effects upon the instantaneous orbital par_moters_

as described by Equations 12513 and 126B; may be treated as perturbations.

That is; in the vector equation

(56B)

the apsidal and nodal line rotations due to oblateness effects would be seen

as part of the applied accelerations (/_a- /_an ). Either approach• r

appears feaslble and tractable for synthesis and an&lysis. However; at this
8ime_ the latter approach appears more amenable to mathematical treatment.

Aside from the simplifed form of the assumed potential field; the basic

energy equation and the resultant equations of motion are valid only for

motion in a vacuum; or nonresistive medium. However; other media may be
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encountered which could cause drag forces upon a space vehicle. The gaseous

atmosphere of a planet obviously constitutes such a medium. Also, clouds

of microparticles may be encountered in interplanetary space. In both cases,

the medium is principally composed of molecular matter. It is interesting

to note that Jacobi (Ref. 30) speculated upon and briefly treated this

possibility. IIowever, ionic or submolecular clouds may be even more common,

or significant to vehicle motion, than microparticle clouds. Consequently,

analytical treatment of such forces, which result from passage through a

resistive medium, by the hodograph equations could be of great potential use.

In this respect, the work of Reference 31 is noted as an early attempt to

interpret the atmospheric re-entry problem in terms of the instantaneous

hodograph.

In general, the resistive forces are a function of the relative velocity
between vehicle and medium. Consequently, treatment of these forces in the

original basic equations or as perturbation forces (see Eq. 56B) can be

expected to provide promising equations of motion for solution and/or

computation. Briefly, consider the following functional relation which

approximates the terrestrial atmospheric re-entry forces:

f=K d O'v

where

CT._O-oexp (_ ELr} (128)

It2is clear that the force varies directly as the product of velocity squared
(v). and a transcendental function of the normal velocity (vn) since the

exponential term of Equation 128 is related to the normal velocity by Equation

36. Since the difficulties of analysis with the resultant equations cannot be

evaluated without further study, such investigation is recommended in view

of the potential value for advanced re-entry problems. Note that the func-
tional relation for forces due to interplanetary resistive media will probably

not be related to position coordinates, but only to velocity coordinates

directly.

B. Investi6ation of Basic Characteristics of IIodo_ra_h Equations

It has previously been noted that mass-variation functions of space,

velocity, or acceleration coordinates, rather than of time explicitly, would

enable the possible generation of the powered trajectory hodograph directly,

without analytic integration of the hodograph equations. It is recommended

that realizable and useful mass-variation functions of space, velocity, or

acceleration coordinates be postulated and studied. This investigation should

be conducted concurrently with the development of hodograph generation tech-

niques.

65



The generation of a powered trajectory hodograph may be obtained by formal

application of the differential geometry. It is suggested that such generation

techniques be developed. As part of such study, the oblateness effects due to

potential field harmonics as well as drag forces of a resistive medium, might
be considered.

The powered trajectory hodograph should enable the derivation of energy

relations for the instantaneous thrust energy and orbital energy_ as a function

of coordinates in the hodograph plane. With such energy relations, the relative

merits of various trajectories and thrust programs could be readily evaluated.

In addition, the orbital energy diagram (Ref. 4) may prove useful in such

study.

For direct utility_ any solution generated in the hodograph plane or upon

analytic integration should ultirm_tely be expressed in time explicitly. Con-

sequently_ as originally proposed_ the time relationships should be determined.

It is clear that an infinite choice of thrust programs is available to

provide a realizable trajectory between specified sets of endpoint conditions.

In general_ the relative merits of thrust programs for essentially impulsive

(or high level) thrust vs essentially continuous (or low level) thrust are not

well understood. While specified optimization of fuel and time constraints

permits some statements about specific performance characteristics to be nmde,

relative evaluation criteria are generally unavailable_ especially when

optimization criteria are not specified. If the previously noted development

of hodograph generation techniques_ and energy and time relations were sub-

stantially successful, then the development of such evaluation criteria would

be apparent. Consequently, the development of such criteria is reco_nended,

upon prior satisfactory completion of t_le above proposed studies.

C. Pro_ramMechanization

The basic nature of the hodograph equations enables the trajectory syn-

thesis and analysis to be treated completely in the hodograph plane, both

for powered and ballistic flight, without the need for analytic integration

(excepting possible mass-variation functions of time). Consequently, it has

been apparent that trajectory computation for machine solution might be simpler

and faster with at least equivalent accuracy. The relatively simple computation

programming of the lunar landing problem showed that programming was much

simpler; and the effective use of diagnostic techniques was considerably

easier. Consequently, the use of the hodograph equations for a real space system
problem should be considered.

For example, the set of conventional equations used in the Gemini com-

putation program could be transformed into hodograph equations analytically,

and subsequently progra_mmed. The two programs could then be studied and eval-

uated from the viewpoint of programming ease and reliability, computation

speed and accuracy, and amenability to diagnostic procedures.
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As a result of the extensive use of machine computation for problem

solution of space trajectories, the development of machine techniques of

optimization (e.g., with the variational calculus or dynamic programming) has

become quite attractive. It became apparent, in the velocity hodograph

studies, that many optimizations are possible with the hodograph equations,

in analytic form. Consequently, it is recommended that optimization criteria

and solutions be studied, as applied to the hodograph equations of motion.

In complex computation programs, effective display of the most pertinent

characteristics for effective monitoring is becoming increasingly important

and critical. The geometric interpretation of hodograph relations, and the

algebraic form of the possible transformations between space, velocity, and

acceleration coordinates indicate that the hodograph equations are extremely

suitable for direct data readout and situation displays. The broad choice

of characteristic data available from the transformations provides considerable

design freedom for the human engineering and display system designers.

If thrust should unexpectedly be shut down due to failure or emergency

conditions, the hodograph equations provide the resultant ballistic trajectory

directly, without auxiliary computation or modification. Also, the simpler

computation as well as the possibility of analytic solu_±ons indicates that

real-time (or shorter) solution for the powered or ballistic trajectory is

feasible. Consequently, emergency command and control by a ground control

center or an onboard astronaut may be very effectively mechanized by the

hodograph equations.

It is suggested that both system design areas of situation displays and

emergency command and control be studied for possible application of the

hodograph equations and application techniques.

D° Lunar Landin_ Problem

Further work on possible analytic solution for the lunar landing problem

appears quite attractive, especially if this thrust program is of continuing

real interest. As noted in the section on machine solution, new approaches
which have not been exploited due to lack of research time have become avail-

able. In any case, the possible interpretation of the trajectory dynamics from

the energy viewpoint appears promising for potential extension of the appli-

cation techniques. That is, the theory developed for the nonlinear mechanics

may lead to further understanding or solutions, upon its application to a

given problem such as the lunar landing problem formulated by the hodograph
equations of motion.
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XII. NOMENCLATURE

scalar of the total acceleration vector

semimajor axis of the instantaneous orbit

unit-mass acceleration due to applied thrust

scalar hodograph parameter of an instantaneous orbit

hodograph vector of an instantaneous orbit

(= r x_ ) always directed normal to the instantaneous

orbital plane

coefficients for the polar equation of tme limagon

system energy of orbital point-mass motion

eccentricity of the instantaneous orbit

scalar of the total force vector F

scalar of the force vector f_ ?_e to thrust only

incidence angle between the orbital plane and

the equatorial plane of the celestial body

orthogonal unit vectors of a rotating polar

coordinate system in one plane

first coupling constant of the spherical harmonic

expansion for the gravitational potential of the

celestial body, described as an oblate spheroid

constant

constant mass-flow ;_te

Lagrangian

total angular momentum of the vehicle center-of-

mas s

system mass

mean angular velocity of the vehicle in orbit

point in space

semilatus rectum of the instantaneous orbit
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Qi

qi

R

m

R

_R

S

T

t

U

U

V

V

vcj

Vn

V r

W

X,Y

C_

scalar of the radius vector of the limacon

generalized force component

generalized coordinate

scalar hodograph parameter of an instantaneous

orbit

hodograph vector of an instantaneous orbit, always

directed parallel to the instantaneous apsidal line in

the perigeal sense

scalar of the radius vector _ originating at the center

of the celestial body

radius of curvature

scalar of the path vector

scalar of the thrust vector T

time

kinetic energy of orbital point-mass motion

slope of the tangent line to the acceleration hodograph

at the given point of orbit

scalar potential function of the celestial body

scalar of the vehicle system velocity vector V

exhaust gas velocity

velocity vector component normal to the radius vector

in the instantaneous orbital plane

(positive sense toward the orbital flight direction)

velocity vector component along the radius vector

(positive sense outward from the celestial body center)

velocity-dependent potential function

rectilinear coordinates fixed in inertial space

density coefficient

angle between the hodograph V n- axis and the hodograph
total velocity
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N

V

P

¢

¢

(-)

(-)

(..)
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angle between the hodograpn Vn- axis and the
hodograph radius R tu _he orbital body point

on the hodograph

latitude angle from the equatorial plane of the

celestial body

angle between the total velocity vector and the

local horizon in the orbit__l plane

angle between the tangent line to a point on the

acceleration hodograph, and the normal line to

the radius vector at that point

parametric variable

gravitational constant for the celestial boay

direction of radius vector r

angle between the radius vector (whose direction only is

defined by the line N ) and an arbitrary reference line

fixed in inertial space

scalar of the total acceleration of an orbital vehicl_

atmospheric density function

angle between tangel. L line to a point on the acceleration

hodograph and the abscissa axis

true anomaly of the vehicle in instantaneous orbit

apsidal line of the instantaneous orbit at perigee

rotation of the apsidal line of an orbit

angle between the radius to a point on the acceleration

limacon and the tangent line at that point _. m

rotation of the nodal line of an orbit

Superscripts

per unit mass of the ( ) - term

vector quantity

first time derivative of the ( ) - term

second time derivation of the ( ) - term



b

C

d

e

f

i

J

m

o

P

r

X,y

¢

Subscripts

ballistic

circular

drag force

celestial body surface

final

initial

due to the coupling constant J of the harmonic

expansion of the potential field of an oblate spheroid

mas s

reference value

powered

radial

rectilinear coordinates fixed in inertial space

normal

derivative with respect to +
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APPENDIX A

PROBLEM STATEMENT FOR LUNAR LANDING TRAJECTORY

The lunar landing trajectory which comprises the specified application

problem for this research study is defined by the following thrust program;

initial and final conditions_ as presented by NASA.

A. Thrust Program

The vector direction of thrust is always in direct opposition (i.e., at

180 degrees) to the velocity vector. The thrust magnitude is constant and

is given together with relevant problem constants_ as follows:

i. T = 6000 pounds

2. Specific impulse = 305 seconds

3. Lunar radius = 5_702,000 feet

4. Lunar surface gravity = 5.32 feet per second 2

5. Terrestrial surface gravity = 32.17 feet per second 2

B. Initial Conditions

The vehicle is at the perigee of an elliptical orbit when thrust incep-

tion occurs; defined by the following nominal initial data:

i. r = 0

2. [b = 5674 feet per second

3. m = 384.5 slugs

4. Altitude = 5%000 feet

5. I : o

C. Terminal Conditions

The trajectory is terminated when the velocity becomes zero. At that

time, the thrust would be shut down. The nominal terminal conditions obtained

with machine solution of the classical equations of motion are as follows:
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3. m = 211.4 slugs

4. Altitude = 5467 feet

5. _ = 283 seconds

For comparative evaluation of the machine solutions with a classical

equation program and with a hodograph equation program_ the following equa-

tions and endpoint conditions were used by the UA staff for programming and

machine solution:

where

i. Classical Equations

m=m i +rht

2_P+r_ =Fv
m

•
r z m

Fr=-T(

I

V= /, Z

Initial Conditions :

= 0

r_ = 5673.63 feet per second

r = 5.752 x 106 feet

m i = 384.507 slugs

= -0.6115055 slugs per second

= 172.968 x 1012 feet 3 per second 2

T : 6000 pounds
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o

where

Terminal Conditions:

= 0

r12 = o

Hodograph Equations

m= mi+ rht

I_sin (_÷2(_sin ¢ cos_ = F-.x-r
m

Fp
d*Rcos4 -2_ si."4>=-_--

FF = -T( C÷ Rcos_v )

Fr=_T( Rsin(_v. )

v='Vc =+R=+ ZCRcos(_

Initial Conditions:

C = 5300.75697 feet per second

R = 373.24303 feet per second

m i : 384.507 slugs

nl = -0.6115055 slugs per second

T = 6000 pounds

Terminal Conditions:

Rsin _ : o

C+Rcos¢ = o
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AFYENDIX B

THE ACCELERATION LIMA_0N

The lima@on_ a special plane curve ascribed principally to Pascal (Ref.

19 and 20)_ can be defined by the following polar equation:

=c+d cos 
(A-l)

or by the following par___netric equations:

x : c cosX + d cos2 X (A-2)

y = C sin _. ÷d sin 2 )_. (A-3)

Given a circle of radius = _ , the lima_on may be generated by the geometric
construction in Figure B-I. _ Select a point on the Circle (0AD) as the origin

0 of a rectilinear coordinate system (X-Y), with one axis al_g a diameter

(_). Pass a line through the origin at the required a_gle _ . From the

resulting line intersection A with the circle, obtain points B and Cj each

at a distance = c. The points B and C comprise two points of the lima_on,

the complete figure of which is generated for all possible values of _ with

specified c and d.

The geometric form of the lima_on figure varies with the relative values

of the constants c and d_ as shown in Figure B-2. The lima@on has many inter-

esting properties, some directly useful in optics. Although these properties

of the lima@on will not be presented here, it is noted I that the complex

variable transformation w- z makes circles Iz-bl = c, (b,c real), in the

z-pis_le correspond to lima_ons in the w-plane_

Some characteristic properties of the acceleration lima9on (Equation 64)

have been derived and presented in Table B-I_ together with basic definitions.

These properties are defined as shown in Figure B-3.

_hillips, E.G._ "Functions of a Complex Variable", Interscience Publishers

(1946), pp. 61-62.
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Fig. B-I Generation of the Lima¢on
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TABLE Z-T

EQUATIONS FOR 2N_E ACCELERATION LINAC0N

BASIC DEFINITIONS

where C 2

CR

(A-_)

CHARACTERISTIC PROPERTIES

ton _=-
c+dcos_ i+ecos(_

2dsin_ "-- 2esin_

(A-5)

tonT =
3dsinZ ¢- ( d+ccos _}

,_°¢(c.3dco,_)
3esin2 _- (e*c_s(_] (A-6)

I

._p_[(,d'.c']._cdco,_-_d"co,'_]{
(6d',c'),4cdco,_-3Zco,'_

(A-7)

(A-8)
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